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ABSTRACT

A direct solution procedure for computing the flutter Mach number and the flut-

ter frequency is applied to the aeroelastic analysis of propfans. The proce-

dure uses a finite element structural model and an unsteady aerodynamic model

based on a three-dimensional, subsonic, compressible lifting-surface theory.

An approximation to the Jacobian matrix that improves the efficiency of the

iterative process is presented. The Jacobian matrix is indirectly approximated

from approximate derivatives of the flutter matrix. Examples are used to

illustrate the convergence properties. The direct solution procedure facili-

tates the automated flutter analysis and contributes to the efficient use of

computer time as well as the analyst's time. Further details of the numerical

procedure are given by Murthy and Kaza (1987).

*NASA Resident Research Associate.
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MOTIVATION

Flutter of propfans and other types of turbomachinery blading is an important
phenomenonthat has generated considerable interest. Flutter prevention has
been a significant factor in the design of propfan blades. Flutter prevention
is also significant for turbomachinery, particularly for unshrouded blades.
With the recent advances in computer technology, automated design of propfan
and turbomachinery blades by using optimization techniques has becomepracti-
cal. Design optimization employing flutter constraints requires repeated solu-
tion of the aeroelastic equations of motion to obtain the flutter parameters
as the design is updated. For the optimization to be performed in a realistic
period of time an automated flutter analysis capability is essential. It is
also desirable for the analysis to be computationally efficient in order to
keep the central processing unit (CPU) time and the turnaround time within rea-
sonable limits. Automated flutter analysis can also shorten the nonautomated
design process by reducing the analyst's time.

WHY AUTOMATED FLUTTER ANALYSIS?

• ESSENTIAL FOR REPEATED EXECUTION

OF FLUTTER ANALYSIS CODE

OPTIMIZATION
FLUTTER
ANALYSIS

• ALSO USEFUL IN NONAUTOMATED DESIGN PROCESS

CD-88-31710

1-324



FORMULATIONOFFLUTTERANALYSISPROBLEM

The computational procedure to be presented is applied to the analytical formu-
lation described in detail by Kaza, et al. (1987a, 1987b). This formulation
is applicable to the flutter analysis of a single-rotor propfan containing an
arbitrary number of blades rotating at a fixed speed in an axial flow. The
structure is modeled by finite elements. The aerodynamic model (Williams and
Hwang,1986) is based on a three-dimensional, subsonic, compressible
lifting-surface theory.

For simplicity, the effect of steady deformations due to aerodynamic loads on
the flutter boundary is neglected. The error introduced by ignoring the steady
aerodynamic deformations is shownin Kaza, et al. (1987a) to be small enough to
produce an approximate flutter point. In particular, the effect of the steady
aerodynamic deformations on the flutter Machnumber is not very significant.
Thus the approximate flutter analysis neglecting steady aerodynamic deforma-
tions is suitable for use in design optimization procedures that require
repeated efficient execution of the flutter analysis. The optimal design can
be easily checked for the flutter condition by using the refined flutter analy-
sis with steady deformations and the conventional procedure.

The propfan is assumedto have identical groups of blades symmetrically distri-
buted about a rigid disk. The iinearized aeroeiastic equations of motion are
then uncoupled for different intergroup phase angle modes _r- The flutter
Machnumberfor the propfan is then the lowest Machnumberat which one of the
intergroup phase angle modesbecomesunstable.

[Mo](ql + [Ko]Iql = [A(M,_)]Iq I

[Mg]

[Ko]

Iql

GENERALIZED MASS MATRIX

GENERALIZED STIFFNESS MATRIX

GENERALIZED COORDINATE VECTOR

[A(M,oo)] GENERALIZED AERODYNAMIC MATRIX

[A(M,_)] IS USUALLY VALID ONLY FOR'SIMPLE HARMONIC MOTION

CD-88-31711
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CONVENTIONALPROPFANFLUTTERANALYSIS

The conventional procedure for obtaining the flutter Mach number MF and fre-

quency _F is as follows. The aerodynamic matrix is evaluated at an assumed

Mach number MF, an assumed frequency _F, and an assumed interblade phase

angle aF, and then the flutter equation is solved for all the eigenvalues _2.

This procedure has been implemented for propfans in a program called ASTROP3.

In general, these eigenvalues are complex. The real and imaginary parts of

i_ represent the effective damping and frequency, respectively. The assumed

frequency is varied until it is equal to the frequency corresponding to the

eigenvalue with the least effective damping. This frequency matching forms the

inner iteration. When this iteration reaches convergence, the Mach number is

varied until the effective damping of the eigenvalue corresponding to the

matched frequency is equal to zero. This forms the outer iteration. The flut-

ter Mach number and the flutter frequency are obtained at the convergence of

the outer iteration.

The conventional procedure cannot be reliably automated because it requires

that the identity or ordering of the eigenvalues be preserved over a wide range

of assumed frequencies and Mach numbers. Most eigensolution routines do not

compute the eigenvalues in any particular order, and the sorting of eigenvalues

by frequency or magnitude does not usually preserve the continuity. Loss of

continuity necessitates user intervention and complicates the automated analy-

sis. A direct solution of the flutter equation that alleviates these problems

is proposed and described. It views the flutter equation as an inplicit

double-eigenvalue problem.

i INPUT ROTATIONAL SPEED AND BLADE GEOMETRY OR GEOMETRIES I

RUN FINITE ELEMENT PROGRAM TO GET STEADY.STATE ]
GEOMETRY UNDER CENTRIFUGAL LOADS I

RUN FINITE ELEMENT PROGRAM TO GET FREQUENCIES
AND MODE SHAPES OF INTEREST

_1 ASSUME M F, eF J-I

.I ASSUME _F J-I

I CALCULATE UNSTEADY AERODYNAMIC LOANS I

FORMULATE AND SOLVE COMPLEX EIGENVALUE PROBLEM I

CHANGE _F NO _ii__

CHANGE M F NO

tTC_

[ PRINT MF,_F l

• NEEDS EIGENVALUE TRACKIN.O AND IS THUS DIFFICULT TO AUTOMATE

• REQUIRES DOUSLE ITERATION (INNER.OUTER LOOPS)

• NEEDS AS MANY EIGENVALUES AS THERE ARE MODES

1-326



DIRECTSOLUTIONOFFLUTTEREQUATION

Whenthe dependenceof the aerodynamic matrix on the assumedMachnumber and
frequency is considered explicitly, the flutter equation can be viewed as an
implicit double-eigenvalue problem. In general, the aerodynamic matrix [A(MF,
_F] is a transcendental function of the assumedfrequency and Machnumber.
Only real values of MF and _F are of interest. The two eigenvalues MF
and _F are coupled since the aerodynamic matrix is complex.

Wenow have two equations in two unknowns,MF and _F" These equations can
be solved by any of the methods for solving a system of nonlinear equations.
Whenthey are solved for MF and _F, no further iterations are required for
the purpose of matching assumedand computedquantities. This procedure is
illustrated below. Once MF and _F are found, inverse iteration can be
used to find the flutter mode.

IF M F IS THE FLUTTER MACH NUMBER AND _F THE FLUTTER FREQUENCY,

[e]Iqo/= [01

WHERE

[B] = - _2[Mg] + [Kg] - [A(MF,uF) ]

FOR A NONTRIVIAL FLUTTER MODE, WE HAVE

detI-_o2[Mg] + [Kg]- [A(MF,_OF)]I = O

LET

D = detI-_o_[Mg ] + [Kg]- [A(MF,.F)]I

= DR(MF,.F) + iDI(MF,_OF)

WHERE DR AND DI ARE THE REAL AND IMAGINARY PARTS OF THE CHARACTERISTIC
DETERMINANT D, RESPECTIVELY. THEN AT FLUTTER CONDITION

DR(MF,_OF)= O

DI(MF,_F) = 0
CD-88-31713
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PROPFANFLUTTERANALYSISBY DIRECTSOLUTION

In contrast to the conventional procedure the direct solution outlined here

eliminates the need to track eigenvalues to determine the flutter point• In

addition to this important benefit the double iteration on the complex eigen-

solution is replaced by a single solution of a system of two real nonlinear

equations. The Mach number and frequency are varied simultaneously in this

procedure rather than one at a time as in the conventional procedure. Thus the

flutter Mach number and the flutter frequency are determined simultaneously.

The formulation of a transcendental double-eigenvalue problem in preference to

a linear single-eigenvalue problem may seem to defeat the objective of

increased efficiency, even if it is more suitable for automation, However, the

price to be paid is not as great as it may seem. The transcendental eigenvalue

problem needs to be solved for only one set of eigenvalues in most cases,

whereas the linear eigenvalue problem has to be repeatedly solved for all the

eigenvalues, which are equal in number to the number of assumed mode shapes•

The direct solution may not find the lowest flutter Mach number if more than

one structural mode were to flutter in the Mach number and frequency range of

interest for the selected intergroup phase angle mode• Under these circum-

stances one will be forced to search the entire range of interest for the roots

MF and _F, starting with different initial guesses. This is not amenable to

an efficient automated procedure. However, it is expected that these circum-

stances will rarely occur for tuned or alternately mistuned propfans. This is

not a major limitation for two other reasons: (i) the frequency interval in

which flutter occurs is usually determined early in the design phase and (2)

the search domain can be considerably reduced after a few orienting runs.

I INPUT ROTATIONALSPEEDAND BLADEGEOMETRYOR GEOMETRIES J

RUN FINITE ELEMENTPROGRAMTO GET STEADY-STATE
GEOMETRYUNDERCENTRIFUGALLOADS

I ASS°M M,,--, I

CA'O°LATEUNST.QYAERDQ AM,OLOADSI

I FORMULATEFLUTTERMATRIX AND GET NEW MF AND _F I

PRINT I"NO FLUTTERFOR OF"

NO N_

NO

I PRINT MF,. F }

* ELIMINATESEIGENVALUETRACKING

• REQUIRESONLYSINGLEITERATION

• REQUIRESSOLUTIONOF ONLYONE SET OF M AND. co-.-_,7_,
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NUMERICALMETHODSFORDIRECTSOLUTION

The flutter Machnumber and flutter frequency MF and _F may be solved for
by Newton's method. The iterative schemefor Newton's method is

IMFI= _ [jk ]-I

_F (k)

D R

DI l(k)

where k is the iteration number and [JK] is the Jacobian matrix given by

DkR,MF

[Jk ] = [DkI,M F

DkR,_F]

Dkl,mFJ

The Jacobian [Jk] is expensive to compute because the evaluation of the aerody-

namic matrix [Ak] is computationally intensive. Several quasi-Newton algo-

rithms that approximate the Jacobian in various ways are available.

NEWTON'S METHOD :

"- - [Jk] - 1

OOF (k+l) OOF (k) DI (k)

[Jk] EXPENSIVE TO COMPUTE

QUASI-NEWTON METHODS:

[Jk] APPROXIMATED IN VARIOUS WAYS

CD-88-31715
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A BETTERQUASI-NEWTONMETHOD

A quasi-Newton algorithm is proposed that is more efficient than the algorithms
currently available for determining the flutter Machnumberand the flutter
frequency. The numerical schemeis based on the hypothesis that approximating
the derivatives of the flutter matrix [Bk] provides a more accurate approxima-
tion to the Jacobian matrix [Jk] than directly approximating the derivatives of

the characteristic determinant. The numerical scheme based on this hypothesis

approaches Newton's method in its superior convergence characteristics with

the same cost per iteration as the secant method.

The derivatives [Bk],MF and [Bk],_F of the flutter matrix are approximated by

following a reasoning similar to that employed in deriving Broyden's method

(Johnston, 1982). Let AM k = MF(k_I) - MF(k) and _k = _F(k-l) - _F(k)" The

derivatives are approximated in the direction of the last move to satisfy

[Bk-l] = [Bk] + [Bk],MF " AMk + [Bk],m F " Amk

and are assumed to be unchanged in the direction orthogonal to the last move.

APPROACH

• APPROXIMATE THE JACOBIAN INDIRECTLY BY APPROXIMATING

THE DERIVATIVES OF THE FLUTTER MATRIX

• UPDATE THE DERIVATIVES OF THE FLUTTER MATRIX ONLY IN THE

DIRECTION OF THE LAST MOVE

RESULT

• A QUASI-NEWTON METHOD MORE LIKE NEWTON'S METHOD

THAN OTHERS

• THE FLUTTER MODE ALMOST A BYPRODUCT

CD-88-31716

1-330



EFFICIENCY OF NUMERICAL PROCEDURE

The direct solution procedure was demonstrated by performing flutter boundary

calculations at various rotational speeds for two propfan rotor configurations.

The first configuration consisted of eight identical blades. The second con-

figuration was an alternately mistuned rotor with eight blades.

The typical progress of iteration, for initial guesses for flutter Mach number

and flutter frequency of 0.5 and 310 Hz, respectively, with the direct solution

procedure and the conventional procedure, is shown in the first table. Recall

that the conventional procedure relies on user interaction and judgment. The

progress of iteration shown for the conventional procedure is typical. The

direct solution procedure, in addition to being suitable for automation, is

also more efficient as evidenced by the considerably smaller number of analysis

steps. Thus both the CPU time and the analyst's time are considerably reduced

by using the direct solution procedure.

The results show that a fair initial guess would converge to the "exact" flut-

ter point after about 5 to i0 flutter matrix evaluations. The second table

shows the CPU times on the Cray-XMP required to obtain the flutter boundary for

good initial guesses and poor initial guesses. The CPU times for one flutter

eigenvalue analysis at a given set of Mach number and assumed frequency are

also shown for comparison. With a good initial guess the flutter Mach number

and the flutter frequency can be obtained for two or three times the cost of a

single eigenanalysis. The direct solution procedure is much less expensive in

terms of CPU time as well as analyst's time than the conventional procedure,

although precise comparisons have not been made.

PROGRESS OF ITERATION

(5280 rpm; BLADE SETTING ANGLE AT 0.75 RADIUS, 61.6°; _r=225 °)

COUNT CONVENTIONALPROCEDURE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

FLUTTER
MACH

NUMBER,
M

0.500

1
.700

1
.616

l
.64O
.640
.640
.641
.641

a.641

FLUTI'ER
FREQUENCY,

b,P,

Hz

310.0
267.5
268.9
268.9
268.9
299.8
298.9
298.9
286.3
290.1
290.5
290.4
292.9
293.9
294.0
293.9
294.1
294.1

DIRECTSOLUTIONPROCEDURE

FLUTTER
MACH

NUMBER,
M

0.500

FLUTTER
FREQUENCY,

Hz

310.0
.499 310.0
.500 313.0
.701 289.7
.590 287.7
.641 293.6
.642 294.1
.641 294.1

a.641 294.1

aConverged.

CD-88-31717
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CPU TIME FOR AUTOMATEDFLUTTERANALYSIS

TUNED ROTORb--8BLADES;
6 MODES/BLADE;5280 rpm; _r=225 °

MISTUNEDROTORC--8BLADES;4 GROUPS;
TWO MODES/BLADE;5190 rpm; _r=90 °

EIGENSOLUTION
AT A SINGLE

SET OF MACH
NUMBER M

AND
FREQUENCYoo

DIRECT SOLUTIONTO FIND
MF AND OOF

GOOD POOR
INITIAL INITIAL
GUESSa GUESSa

CPU TIME, SEC

4.332

10.020

10.356
(M =0.7O;
_=310 Hz)

22.084
(M = 0.65;
oo=310 Hz)

22.146
(M=0.45;

= 340 Hz)

31.970
(M=O.5;
oo= 340 Hz)

alNITIALGUESSESAREGIVENIN PARENTHESES.
b"EXACT"MF=0.641AND"EXACT"_F=294 Hz.
C"EXACT"MF=0.718AND"EXACT"OOF=285Hz.

CD-88-31718
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ACCURACY OF JACOBIAN

So that the accuracy of the approximate Jacobian could be judged, the nonlinear

equations were solved by Newton's method, by the present numerical procedure,

and by alternative quasi-Newton methods such as the multipoint secant method

(implemented in IMSL routine ZSCNT), the modified Powell algorithm (implemented

in IMSL routine ZSPOW), and Broyden's method (Johnston, 1982). For the cases

tested, the present procedure outperformed all three alternative methods in

terms of efficiency. Even though the characteristic determinant Dk is never

calculated in the present procedure, the variation of the absolute value of

D k with each iteration is shown in the graph so that the procedure can be com-

pared with Newton's method and the multipoint secant method. For these cases,

the "exact" flutter Mach number was 0.641, the "exact" flutter frequency was

294 Hz, and the initial values for M F and _F were 0.65 and 330 Hz,

respectively. The determinant value has been scaled so that 1.0 _ DO _ i0.0,

where DO is the characteristic determinant at the beginning of iteration.

The iteration history for the current numerical procedure closely resembles

that for Newton's method, indicating the accuracy of the approximation pro-

posed here for the Jacobian matrix. In contrast, the secant approximation for

the Jacobian matrix requires almost double the number of iterations.

5280 rpm; BLADE SETTING ANGLE AT 0.75 RADIUS, 61.6°; _r=225 °

ABSOLUTE
VALUE OF
FLUTTER

DETERMINANT,
IDkl

1.6

.8

.4

[] NEWTON'S METHOD

-- _ _ SECANT METHOD
N PROCEDURE

1 2 3 4 5 6 7

NUMBEROF ITERATIONS, k

CD-88-31719
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RANGEOF CONVERGENCE

The range of convergence is an important factor in any iterative procedure
since it has an important effect on how closely the initial solution must
approximate the final solution. The graph on the left shows the numberof
flutter matrix evaluations required for convergence; the initial guesses for
MF are varied and the initial guess for _F is fixed at 310 Hz. The range of
Machnumberconvergence is from 0.2 to 0.8. The graph on the right similarly
shows the numberof flutter matrix evaluations required for convergence; the
initial guess for MF is fixed at 0.65 and the initial guesses for _F are
varied. The frequency range of convergence with the direct solution procedure,
230 to 350 Hz, is slightly larger than that with the secant method. From
these graphs it can be stated that the present procedure has a large range of
convergence.

16

NUMBER OF 121"

FLUTTER MATRIX 8zEVALUATIONS FOR
CONVERGENCE

4

0
.2

r-I SECANT METHOD

Z_ DIRECT SOLUTION PROCEDURE

"EXACT" MF -_

.4 .

ASSUMED FLUTTER

MACH NUMBER, MF

I
.8

I "EXACT" _F

i i $1 i
230 270 310 350

ASSUMED FLUTTER

FREQUENCY, _F, Hz

CD-88-31720
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SUMMARY

A direct solution of the equations of motion is demonstrated to be a reliable

automated flutter analysis procedure if steady aerodynamic deformations are

ignored. The direct solution procedure replaces the inner-outer iteration loop

of the conventional procedure by a single iteration loop. A numerical proce-

dure, based on an accurate and efficient approximation to the Jacobian matrix,

is presented. The procedure is straightforward in concept, and results for

test cases show good convergence properties. Since the procedure is iterative,

it is particularly suitable for design optimization. As the optimal design is

evolved, the flutter solution is expected to change incrementally from design

to design, so that the previous solution provides good estimates for the cur-
rent solution.

• DEVELOPED A QUASI-NEWTON METHOD FOR

DETERMINANT ITERATION

• AUTOMATED THE PROPFAN FLUTTER ANALYSIS BY

DIRECT SOLUTION

• DEMONSTRATED GOODCONVERGENCEAND EFFICIENCY OF

DIRECT SOLUTION METHOD WITH ADVANCED AERODYNAMIC

MODEL

CD-88-31721
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